
www.manaraa.com

Artificial Brains as Networks of Computational Building Blocks

Telmo Menezes and Ernesto Costa
Centre for Informatics and Systems

of the University of Coimbra (CISUC)
{telmo, ernesto}@dei.uc.pt

Abstract— The latest advances in the gridbrain agent brain
model are presented. The gridbrain models brains as networks
of computational components. The components are used as
building blocks for computation, and provide base function-
alities like: input/output, boolean logic, arithmetic, clocks and
memory. The multi-grid architecture as a way to process
variable sized information from different sensory channels is
addressed. We show how an evolutionary multi-agent simulation
may use the gridbrain model to emerge behaviors. The Simu-
lation Embedded Genetic Algorithm (SEGA), aimed at contin-
uous multi-agent simulations with no generations is described.
An experimental scenario is presented where agents must use
information from two different sensory channels and cooperate
to destroy moving targets in a continuous physical simulation.
Results are analysed and synchronization mechanism are shown
to emerge.

I. INTRODUCTION

The growing interest in multi-agent simulations, influenced
by the advances in fields like complex adaptive systems and
artificial life is related to a modern direction in computational
intelligence research. Instead of building isolated artificial
intelligence systems from the top-down, this new approach
attempts to design systems where a population of agents and
the environment interact and adaptation processes take place.
As proposed by Holland [1], intelligence can be seen as the
internal model of agents. In adaptive systems, this internal
model can develop as the agent adapts to the environment.
In nature, adaption encompasses varied processes, from neo
Darwinian evolution to learning in the brain or in the immune
system. We will focus on adaptation based on evolution,
which may be considered the fundamental driving force of
complexification in Nature.

We present for the first time the latest advances in the
gridbrain [8], [10], a model that attempts to address several
important limitations of current artificial brains used in evo-
lutionary multi-agent systems. Two main classes of models
are in use nowadays: symbolic approaches like production
rule systems [2], [1], [6] or decision trees [3] and artificial
neural networks [4], [5], [6]. Evolutionary systems based on
IF/THEN rules tend to lead to simple, reactive agents. They
can be very effective in developing models to abstract and
test ideas about biological, social or other systems, but they
are limiting when it comes to evolving more complex com-
putational intelligence. Artificial neural networks are inspired
in biological nervous systems. A multitude of algorithms
exist for both learning and evolution of ANNs, with many
successful implementations. Recurrent neural networks can
be shown to be Turing-complete [7] and are theoretically

capable of complex computations. It is important to note,
however, that biological neural networks are analogic and
highly parallel systems, while modern computers are digital
and sequential devices. The implementation of artificial neu-
ral networks on digital computers demands for a significant
simplification of the biological models. In neural networks,
neurons are the building blocks. We believe that for the pur-
pose of evolving artificial brains in multi-agent simulations,
it is interesting to experiment with computational building
blocks that are a more natural fit to von Neumann’s modern
digital computer model. We deconstruct the von Neumann
machine [11] into a set of computational building blocks
that fall into the categories of input/output, boolean logic,
math operations, memory and clocks. This way we expect
to facilitate the evolution of systems that take advantage of
the processing capabilities of the computer, and more easily
develop behaviors that require memory and synchronization.

Another limitation of agent models in current evolutionary
multi-agent simulation is the sensory system. Many such sim-
ulations use simple 2D grid models where an agent is only
capable of perceiving one other world entity per simulation
cycle. As we move towards continuous simulations and more
sophisticated sensors like vision or audition, we become
confronted with the problem of dealing with multiple-object
perceptions per simulation cycle. A common approach to
this problem is to pre-design a layer of translation for the
agent’s brain. In rule systems this can be done by defining
input variables like number of visible food items or actions
like go to nearest food item. In artificial neural networks,
it is common to define fixed sequences of input neurons,
sometimes called radars, that fire according to the distribution
of a certain type of entity in the agent’s vision range. These
radars are predefined for certain types or properties of world
objects. Predefinition of sensory translations limit the range
of behaviors that the agent may evolve. In the architecture
we present, this problem is addressed by dividing the brain
in sensory layers (alpha grids) and a decision layer (beta
grid). In a way loosely inspired by animal brains, a layer
exists for each sensory channel (ex: vision, audition, self
state). In a brain cycle, alpha grids first evaluates each of the
objects perceived by their sensory channel at the moment
and extracts general information, which is then transmitted
to the beta grid, that then fires actions. It is our goal to create
systems where the perception layers can evolve with a great
degree of freedom.

In this paper we present the latest version of the grid-
brain agent brain model, including a set of computational

www.manaraa.com

Alpha Grid #1

Alpha Grid #2

Beta Grid

Sensory Channel
#1

Sensory Channel
#2

Output Channel

Fig. 1. Gridbrain computational model.

components and genetic operators to be used in evolutionary
environments. Following that we describe the Simulation Em-
bedded Genetic Algorithm (SEGA), developed for continuous
multi-agent simulations with no generations. We then present
experimental results, where gridbrains are evolved in the
context of a multi-agent simulations, in a scenario where they
must use information from two different sensory channels
and cooperate to shoot moving targets. We end with some
final remarks.

II. THE GRIDBRAIN

The gridbrain is a virtual machine designed to serve as
a brain for an autonomous agent. It belongs to the family
of genetic programming, with some similarities to Parallel
Distributed Genetic Programming [13], [14] and Cartesian
Genetic Programming [15], [16].

As can be seen in figure 1, it consists of a network
of computational components placed on rectangular grids.
There are two types of grid: alpha and beta. Alpha grids
are associated with sensory channels and are responsible for
processing perceptual information. The beta grid receives
inputs from the alpha grids and outputs decisions. A gridbrain
can have any number of alpha grids (one of each sensory
channel), but only one beta grid. This architecture is inspired
on the organization of animal brains, which have areas
for processing sensory information, and others for decision
making, planning and muscle control. It is not intended to be
an accurate model of such brains, but only an application of
the concept of dedicated layers in a network of components.
Furthermore, it is not intended to be a reductionist model
with rigid hierarchies. The only limitation imposed is that
sensory information is fed to the alpha grids and output
is provided by the beta grid. As we will detail later, this
allows the gridbrain to deal with variable sized perceptual
information, while the evolutionary process remains free to
test a diversity of structures.

Connections between components represent flows of in-
formation. A connection from component A to component

B means that, during each computation cycle, the output
value of component A is fed as an input to component B.
The information propagated takes the form of unbounded
floating point values. Two types of connections are possi-
ble: feed-forward connections inside a grid and connections
from any component in an alpha grid to any component
in a beta grid. In neural networks, recurrent connections
allow the system to keep information about the past. Feed-
forward neural networks model purely reactive agents. In
the gridbrain, we provide the system with explicit memory
mechanisms. Components may be able to conserve their state
across computation cycles. We thus chose to only allow feed-
forward connections in the models studied in this work for
simplicity.

In each gridbrain cycle, the outputs of components are
computed in order. We define a coordinate system where
each component position is identified by a tuple (x, y, g), x
being the column number, y the row number and g the grid
number. Components are processed from the first to the last
column, and inside each column from the first to the last row.
The feed-forward restriction is imposed by only allowing
connections inside the same grid to target components with
an higher column number than the origin. The rectangular
shape of the grids facilitates the definition of both parallel
and sequential computational processes.

Both components and connection may either active or
inactive. In figure 1, active components and connections are
represented in black, inactive ones are grey. Active status is
not explicitly encoded in the gridbrain, but derived from the
network configuration. To explain how this works, we must
first introduce the concept of producer and consumer com-
ponents. Producer components are the ones that introduce
information into the gridbrain, while consumers components
are the ones that send information from the gridbrain to the
outside. Input components are the alpha grid components
associated with sensory information. They are updated with
current sensory data in the beginning of each alpha grid
computation cycle. Input components are producers. Other

www.manaraa.com

components that output values different than 0 without any
input present are also considered producers. Examples of
this are a random value component, that outputs a random
value or a component that outputs 1 if the sum of its
inputs is 0. Output components are the beta grid compo-
nents from which decision information is extracted after a
gridbrain compoutation cycle. In an agent environment, they
are associated with triggering actions. Output components
are consumers. An active path is a sequence of connections
that links a producer component to a consumer component.
A connection is considered active if it belongs to an active
path. A component is considered active if it has at least one
ingoing or outgoing active connection.

Only active components and connections influence the
computation performed by the gridbrain. From a genetic
perspective, we can say that active elements are the ones that
have phenotypical expression, while inactive elements can
be seen as analogous to junk DNA. As we will show later,
inactive elements are valuable to the evolutionary process.

In a computation cycle, the sequences are executed for
each grid. There are two evaluation stage, alpha and beta. In
the first stage alpha grids are evaluated, once for each entity
in the sensory channel they are associated with. In the second
stage the beta grid is evaluated once. Alpha grid evaluation
consists of two passes. This is done so that certain alpha grid
components, which we call aggregators, have the chance of
calculating their output based on information about the entire
set of entities. An example of this is a maximizer component
that outputs 1 if the current value inputed is the maximum
for the set of entities present, 0 otherwise. For this to be
possible, a first pass is performed on the grid where only
intra-grid connections are active. In this phase, aggregators
can compute their internal state so that they produce the
correct outputs on the second pass. On the second pass, inter-
grid connections are also active so that information can be
propagated to the beta grid. In the example of the maximizer,
the first pass is used to determine the maximum value, while
the second is used to signal this value when it is found.

A. Component Model

Components are information processing units. They are the
computational building blocks of gridbrains. In the generic
gridbrain model does not define a specific set of components.
Much like machine code instructions, components belong to
classes of functionalities: input/output, arithmetic, boolean
logic, information aggregation, synchronization and memory.
Component sets may be conceived for different environments
and problem domains. However, we will propose a set
of components to be used in physically simulated worlds.
These were applied in the experimentation presented in latter
chapters.

Components have an arbitrary number of inputs and out-
puts, to allow for a high degree of freedom in network topolo-
gies. This contrasts with conventional genetic programming
systems, where functions have fixed numbers of parameters
that must be respected for the resulting programs to be
valid. We strive for a connectionist model closer to natural

internal state

parameter

reset(pass, entity)

input(value, pin)

output()

input values

reset signals

output values

COMPONENT

Fig. 2. Component model.

brains. To achieve this, we developed the component model
presented in figure 2.

The gridbrain design follows an object oriented approach,
where a base abstract component class defines a set of
interfaces for interaction. Specific components are defined
by inheriting from this base class and defining the internal
mechanisms. This way we can have gridbrains made up
of an heterogeneous mix of component, and yet allow the
evolutionary process and computation cycle algorithm to treat
these components as black boxes with a fixed set of external
interfaces.

A component has three interfaces: reset, input and output.
The reset interface is used to signal the component that a
new grid evaluation has started. The input interface is used
to feed a value from downstream components, and the output
interface is used to produce a value to be fed to upstream
components.

Components have internal states. The data structure that
maintains the state is defined by each specific component. We
classify components as operators, aggregators or memories
according to the persistence of the state.

Operators are information processing components that
perform, for example, arithmetic or boolean operations. Their
output is determined only by information present in the
current grid pass. Aggregators extract general information
from a set of entities present in the sensory channel of an
alpha grid, and their output is determined by all the values
received during an alpha stage. They could, for example,
provide minimum, maximum or average values for that stage.
Memories conserve their state across computation cycles and
provide the gridbrain with information about the past.

Components also have a parameter value, which is a float-
ing point number in [0, 1]. Components may use this value to
adjust their behavior. For example, an amplifier component
can use the parameter to determine its amplification factor
or a clock component may use the parameter to determine
its ticking frequency.

A gridbrain computation cycle is performed each time
we want to feed current sensory information and obtain a
decision. Input components have a special input type field

www.manaraa.com

that is used to identify the type of information from the
sensory channel they are associated with. Likewise, output
components have an output type field that identifies the type
of output information they are associated with. In a typical
use of the gridbrain as an autonomous agent controller, each
output type is associated with an action that the agent can
perform.

B. A Component Set

In this section we present the component set we use in the
experimentation presented in this paper. As stated before, the
gridbrain model does not specify a component set, but only
an abstract component model. Components may be tailored
to specific applications and environments. The components
presented resulted from experimentation and a trial and
error process, where we attempted to evolve gridbrains in a
environments. We did however try to create general purpose
components, and expect the ones presented to have broad
application.

Input and output of values in the gridbrains is done by way
of the IN and OUT components. Previously we showed that
alpha grids are associated with sensory channel processing
and the beta grid with decision making. Alpha grids are
where sensory information enters the system and the beta
grid is where decision values are output. This way, IN
components are only to be places on alpha grid sets and OUT
components on beta grid sets. Both IN and OUT contain
a floating point value state. In both components, the rest
interface changes this state to 0 and the output interface
returns the current state value. The input interface of IN
writes a value received to the internal state, while the input
interface of OUT writes a value received that is different
from zero to the internal state.

The two boolean logic components are NOT and AND.
Both are operators with a floating point value internal state.
These components treat their input values as boolean values.
They define a threshold value t to determine if the input
is considered on or off. If |input| ≤ t it is considered off,
otherwise on. The NOT component reset interface sets the
internal value to 1. The input interface checks if the module
of the input value is greater then the threshold, in which case
it changes the internal value to 0. The output interface returns
the internal state. This way, the NOT component returns 1 if
none of its inputs is on. The AND component has a boolean
flag in its internal state, additionally to the floating point
value. This flag signals if the current input is the first one in
the grid evaluation. The rest value initializes the flag to true
and the floating point value to 0. The input interface checks
if the module of the input value is greater that the threshold.
If it is not, it multiplies the current state by 0, otherwise it
multiplies it by the input value if the first input flag is false, or
just stores the input value in the state if it is true. The first
input flag is set to false after an input value is processed.
The AND component can return −1, 1 or 0. We provided
it with the ability to return the signal of the product of the
input values, as this can be useful in sensory information with
symmetry properties, as usually found in continuous physical

environments. The output interface returns 1 if state > 0,
−1 if state < 0 and 0 otherwise.

Arithmetic components can also be used as logic gates,
albeit without the threshold. In fact, we decided to not
include an OR component, as several of those components
can be used as such. The AND component with a single
input connection can be seen as a converter from continuous
to boolean values. We believe the combination of the boolean
components presented with the arithmetic ones is sufficient
for complete boolean logic.

The ten arithmetic components are: SUM, MUL, INV,
NEG, MOD, AMP, RAND, EQ, GTZ and ZERO. These
operators have a floating point value internal state, except
for RAND. RAND outputs an uniformly distributed floating
point value in the [0, 1] interval, regardless of its inputs, and
is a source of randomness.

The MUL component computes the product of all its
inputs. The EQ component outputs 1 if all of its inputs are
equal, 0 otherwise.

All other components have the same input interface: the
input value is summed to the internal state. Their state is
always set to 0 by the reset interface, before a grid evaluation.

SUM outputs the value stored in the state, thus providing
the summation of its inputs. NEG outputs the negative:
−state. MOD outputs the module: |state|. GTZ returns 1
if state > 0, 0 otherwise. ZERO returns 1 if state = 0, 0
otherwise. INV truncates the internal state value to [−1, 1]
and then outputs −1 − state if state < 0, 1 − state if
state > 0. AMP operates as an amplifier. It outputs the
product of its internal state by an amplification factor, which
is determined by its parameter.

NOT, ZERO and RAND are considered producers, because
they can output a value different from 0 when not receiving
any input.

As defined, aggregator components conserve an inter-
nal state across the alpha grid evaluations of a gridbrain
computation cycle. They serve the purpose of extracting
information from the entire set of entities in a sensory
channel. Aggregators are of no use in beta grids, so they
should only be included in alpha grid component set. The
aggregator components we describe here are MAX, MIN and
AVG.

Aggregator computations have two phases, related to the
two passes in alpha grid evaluations. In the first phase, an
internal state is computed from the entire set of entities in the
sensory channel of the containing grid. In the second phase,
this internal state is used to produce an output.

In the first phase, the MAX component finds the maximum
value different from 0 produced by its inputs, across the alpha
grid evaluations in a gridbrain computation cycle. In the
second phase, a value of 1 is output when it is again found. In
a gridbrain computation cycle, the MAX component outputs
1 during the alpha grid evaluation linked to the entity that
produced this maximum, and 0 in other evaluations. If more
than one entity produce a maximum, the 1 value is output
only for the first occurrence. The MAX component is thus
used to signal a unique maximum in alpha grid evaluations.

www.manaraa.com

The MIN component operates in a similar fashion to MAX,
except that it signals the minimum value found. The AVG
component computes the average of its inputs with values
different from 0, across the alpha grid evaluations.

The components that are able to conserve a state across the
lifespan of the gridbrain are: MEM, SEL, DMUL, CLK and
TMEM. These components are used for persistent memory
and synchronization.

The MEM component is a simple memory cell. Its persis-
tent internal state is a floating point variable which we will
call memory state. The memory state is initialized to zero
when the component is created. Inputs are written to the
memory state if the state is 0. The memory state is always
output.

The CLK component is a clock device, producing a 1
signal at fixed intervals, otherwise outputting 0. The interval
between ticks is a number of simulation cycles determines
by the component parameter. It is given by the expression
I(p) = p.Imax, where p is the parameter value and Imax is
the maximum possible value for the period. Imax is a pre-
configured value relative to the environment the gridbrain is
operating on. In a multi agent simulation, it is a good choice
to make Imax equal to the maximum lifespan of the agent. A
clock may be synchronized by way of its input connections.
A clock is forced to fire and restart its firing interval if its
input state changes from 0 to another value.

The TMEM component is a temporary memory. It com-
bines the functionalities of the MEM and the CLK compo-
nents. It keeps a memory state like the MEM component,
and has a periodic triggering mechanism like the CLK
component. It always outputs the current value stored in
the memory state. When the clock mechanism triggers, the
memory state is set to 0. It is a memory cell with the capacity
of forgetting.

The DMUL component is a delayed multiplier. It waits
until all of its input connections have produced a value
different from 0, and then outputs the product of the last
value different from 0 received from each connection. Its
internal state consists of an array of float values, with one
value for each input connection the component has. When the
component is created, the array is initialized to 0 values. The
input interface checks if the input value is not 0. If so, this
value is written to the corresponding position in the array.
The output interface verifies the values in the array. If all of
them are not 0, the output is the product of these values and
the array is reset to 0 values. If at least one of the values in
the array is 0, the output is 0.

The SEL component is an entity selector for alpha grids.
It selects one entity present in the sensory channel of their
containing grid, and keeps producing outputs only during
the grid evaluation corresponding to this entity, while it is
present. When it is no longer present, it selects a new one.
Only entities for which the input state is not 0 are considered
for selection. The selector component allows the gridbrain to
keep track of a specific entity, using its inputs as a filtering
condition. It only makes sense to use this component in alpha

grids.

C. Genetic Operators

We must provide a set of genetic operators that can be
used by an evolutionary algorithm to produce replication
with change. In the following section we will propose an
evolutionary algorithm suitable for continuous multi agent
simulations that takes advantage of these operators. We
provide two types of genetic operators that are usual in evo-
lutionary computation systems: mutation and recombination.
We also provide a formating operator that deals with adapting
the shape of the grids as evolution progresses and is related
to the complexification of gridbrains.

We define mutation operators at connection level and
component level.

There are two pairs of connection level operators:
add/remove and split/join. The operators in each pair are
symmetrical, one performing the inverse operation of the
other.

The add operator inserts a new valid connection and the
remove operator deletes an existing connection from the grid-
brain. These mutations occur with respective probabilities of
pa and pr. These probabilities are relative to the number of
connections in the gridbrain. For each existing connection
there is a pa probability that a new one is generated. Each
existing connection has a pr probability of removal. Multiple
connections may be added or removed in the same mutation
step. This defines a process that adapts to the size of the
gridbrain. The number of mutations tends to increase as the
gridbrain size increases, but the probability per connection
remains the same. Also, if pa = pr, and disregarding
evolutionary pressure, the number of connections will tend to
remain stable. This is part of the measures we take to avoid
bloat [12].

The split operator routes an existing connection through an
intermediary component in the grid. If we have a connection
from component A to component B, two new connections
will be created, from A to the intermediary component C
and from C to B. The original connection is removed. If
the B or C connection already existed, their respective add
operation is just ignored. If A and B are on the same grid,
the component C must be in a column with a number higher
than A and lower than B. If they are on different grids, C
must be in either the origin grid with a column number higher
than A or in the target with a column number lower than B.

Splits and joins occur with respective probabilities of ps

and pj . Again, these probabilities are per existing connection.
A join will only take place if the target component of the
selected connection has an outgoing connection with an equal
tc. Due to the way the split/join operators work, only one
connection at most will meet this condition. The join will
be performed to the selected connection and the one that
meets the condition. With ps = pj and no evolutionary
pressure, the number of connections will tend to remain
stable. Notice that when a connection is split, only the first
resulting connections will be eligible for the symmetrical
join, so the overall probabilities remain balanced.

www.manaraa.com

There are two component level operators: change compo-
nent and change parameter. Change component replaces an
existing component with a new one. The new component
is randomly selected from the grid component set, and its
parameter is initialized with a random value extracted from
a uniform distribution in [0, 1]. These mutation occur with a
probability of pc per component in the gridbrain. A variation
of this operator is change inactive component, which works
the same way but only affects inactive components. This vari-
ation is less destructive as it only produces neutral mutations,
which are mutations that do not affect the phenotype.

The change parameter operator alters the parameter of a
component by adding a value x to it. The resulting value
is truncated to the [0, 1] interval. The value x is randomly
generated from a normal distribution x ∼ N(µ, δ2), where
the average, µ is 0. The operator may be parameterized by the
standard deviation, δ, as well as the probability to occur per
component, pp. An higher standard deviation will produce
larger changes in parameters.

A viable recombination operator for the gridbrain has
to deal with the recombination of differently shaped grids,
containing networks with different topologies. Furthermore,
there are different types of components, so the network nodes
are heterogeneous.

The operator we present performs the following steps:
• Create the child gridbrain, with grids the same size and

with the same rows and columns as parent A;
• Recombine equivalent connections from parents A and

B into child;
• Recombine components from parents A and B into

child.
When recombining connections, we start with parent A

and iterate through its connection set. For each equivalent
connection we find, we check if it is present in parent B.
If it is, we import the group from one of the parents with
equal probability. If it is not, the group may be imported or
discarded, with equal probability. Then we iterate through
the connection set of parent B. Again we check for each
connection if it has an equivalent on the other parent. If it
does, we ignore it, has it was already recombined. If it does
not, the same random process of importing or discarding is
used, as with the connection groups that only exist on parent
B.

The last step is to recombine components. For each
component in the child, we check to see if a component in the
equivalent position (given by its column and row IDs) exists
in each parent. If it exists in both parents, one of them is
chosen with equal probability to have the component copied
from. If it exists in only one parent, the component is copied
from it. If it exists in neither parent, a new component is
randomly selected from the grid connection set. A component
in a child may have no equivalent component in any of the
parents if it is situated in an intersection of a column that
only exists in one of the parents with a row that only exists
on the other.

The mechanism used to identify which connections are

equivalent is connection tags. It consists of assigning three
integer values to each connection. There is one value for
the connection, one for the origin an one for the target. We
use three values instead of just one because of the split/join
mutation operator.

Connection tags are (tc, to, tt) tuples, where tc is the con-
nection value, to is the origin value and tt is the target value.
When a connection is split, both new connections inherit
the tc value from the original connection. The first new
connection inherits the to value and the last new connection
inherits tt. A new tag is generated, and is assigned to tt of
the first connection and to of the second. This way, the origin
and target components of the original connection remain
equivalent for the purpose of generating new connection tags.
Also, it can be determined if two connections originated
from the same connection via split, by checking if they share
the same tc value. The reverse operation, join, is performed
only to adjacent connections with equal tc values. A split
followed by a join of the resulting connections will result in
the original connection, with the original connection tags.

Two connections are equivalent if their tag values are
equal. During the evolutionary process, when a connection is
passed from the parent to a child, its connection tags are also
passed. When a new connection is created, tags have to be
assigned to it. In this case there are two alternatives: either we
find an equivalent connection in the population and copy its
connection tags to the new one, or we generate new values.
New values are generated by simply incrementing a global
variable in the systems that holds the last value assigned.

This process requires that when a gridbrain with new
connections is added to the population, these new connec-
tions are compared against all connections in all existing
gridbrains to attempt to find an equivalent. A connection
with unassigned tags is considered equivalent to another one
if, from the connection network perspective, both its origins
and targets are equivalent. Two origins are equivalent from
a connection network perspective if the following conditions
are met:

• Origin component are equal;
• Origin components both have no incoming connections

or they share at least one equivalent incoming connec-
tion.

In the same vein, two targets are equivalent if:
• Target component are equal;
• Target components both have no outgoing connections

or they share at least one equivalent outgoing connec-
tion.

These rules define a constructive mechanism that ties in
with the progressive complexification of the gridbrains in the
evolutionary process. They allow us to match connections
that create the same functionality.

This recombination operator always produces valid grid-
brains and is able to recombine functionalities in a mean-
ingful way. In the absence of evolutionary pressure, it does
not introduce any probabilistic bias towards the increase or
decrease in the total number of connections.

www.manaraa.com

Formating is an operator that adapts the shape of the
grids according to the network contained in the gridbrain.
It is of a non-stochastic nature and can be seen as an
adaptation mechanism. The changes it performs do not affect
the phenotypical expression of the individual. The purpose of
formating is to regulate the search space of the evolutionary
process. It is part of the complexification process. We attempt
to create systems that are initialized with empty brains, and
that undergo an increase in complexity as higher quality so-
lutions are found. Solutions are constructed through iterated
tweaking, in a similar fashion to what happens in nature. Our
goal is to have the size and complexity of the gridbrains to
be determines by the demands of the environment.

Formating operates at grid level and performs changes
taking into account the current active network, which is
the set of active connections. For each grid, this operator
determines if rows and columns should be added, removed
or kept.

Under the genetic operator framework we are describing,
complexification is driven by connection level mutations.
Add/remove and split/join are the operations that directly
affect network complexity. Formating alter the shape of the
grid in such a way that the active network is kept unaltered,
but the following mutation step has freedom to complexify
the network in all the manners available to connection level
operators. This means that the following should be possible:

1) Add a new valid connection between any of the active
components;

2) Add an intra-grid incoming connection to any active
component;

3) Add an intra-grid outgoing connection to any active
component;

4) Branch the output of any active component to an
inactive component in any of the following columns;

5) Split any of the active connections.
The first condition is guaranteed by not altering the active

network. The second condition is met by having no active
components in the first column of the grid, and the third
by having no active components in the last one. The fourth
condition is met by having at least one inactive component
in all rows and the last condition is met by having all active
connections skip at least one column. Formating alters the
grid by inserting and deleting rows and columns, making sure
that all these conditions are met with the smallest possible
grid, without changing the active network.

If new rows or columns are created in a formating step,
the new components are selected randomly from the grid
component set. Furthermore, if a grid is null, meaning it has
no columns or rows, a row and column is always created
so that the evolutionary process can move forward. In fact,
in the experiments we will describe, we just initialize the
gridbrains with null grids.

The format operator can work at grid level and still
enforce the restrictions stated above for the entire gridbrain.
Maintaining inactive columns at the beginning and ending
of all grids guarantees that any inter-grid connection is

splittable, and that it can be split by a component in the
origin or target grids.

The format operator should be applied before the mutation
step in the generation of a new gridbrain. This way the
gridbrain is formated according to the above mentioned
rules when connection level mutations are performed. The
sequence of genetic operations when generating a gridbrain is
recombine(parent1, parent2) → format → mutate if re-
combination is being used, or clone(parent) → format →
mutate for a single parent reproduction. We are considering
the mutate operation to be the combined application of all
the mutation operators described above, according to their
respective probabilities.

III. SIMULATION EMBEDDED GENETIC ALGORITHM

The Simulation Embedded Genetic Algorithm (SEGA)
is a steady-state genetic algorithm that we developed for
the purpose of evolving agents in continuous simulations
without generations. It allows the seamless integration of
an evolutionary process with a multi-agent simulation. New
individuals may be generated at any moment and on demand.

SEGA keeps a buffer of individuals for each species in
the simulation. Each time an individual dies or is removed
from the population, its fitness is compared to the fitness of
a random individual in the buffer. If the fitness is equal or
greater, the recently removed individual replaces the old one
in the buffer, otherwise the fitness of the old individual is
updated using the expression:

fnew = fold · (1− a)

where a is the fitness ageing factor.
The purpose of fitness ageing is to maintain diversity in

the buffer. Individuals that make it to the buffer have a
chance of producing offspring. The higher their fitness, the
more offspring they are likely to produce, but eventually they
will be replaced, even if it is by a lower fitness individual.
Fitness ageing takes place when an individual in the buffer
is challenged by an individual removed from the population,
so it adapts to the current rate of individual removal, which
can be variable and unpredictable.

When the simulation requests a new individual, two ele-
ments in the buffer are selected at random and recombined
if recombination is to be done, or one is selected at ran-
dom and cloned for simple mutation. Mutation is applied,
followed by formating, and the offspring is then placed in
the simulation environment. A probability of recombination,
prec, is defined. This probability is used to randomly decide
in each individual request if recombination is to be applied.

In simulations with fixed populations, as the one presented
in this paper, agent removal is always followed by the
creation of a new agent.

IV. EXPERIMENTAL SETUP

Experimentation is done with LabLOVE [9], a tool that
we developed for our research and that is available to the

www.manaraa.com

Vision Input Description
Position Position of the object relative to the agent’s vision field.

−1 is the farthest possible to the left and 1 is the
farthest possible to the right.

Distance Distance from the object, divided by its view range,
resulting in a value in [0, 1].

Target 1 is object is on target, 0 otherwise.
Line of Fire 1 is currently on the target of this object, 0 otherwise.
Color Distance between agent’s color and this object’s color.
Sound Input Description
Position Position of sound origin relative to agent.
Distance Distance of sound source, divided by sound range.
Action Description
Go Apply forward force to agent.
Rotate Apply rotation torque to agent.
Fire Fire laser.

TABLE I
SENSORY INPUTS AND ACTIONS USED IN THE EXPERIMENT.

community as open source. LabLOVE includes an imple-
mentation of the Gridbrain, the SEGA algorithm and a
physically simulated multi-agent environment, as well as
real-time visualization and data recording modules.

We define a videogame inspired scenario where agents
are evolved to shoot moving targets. Agents have the ability
to move in a 2D physically simulated world and shoot.
They have two sensory channels: vision and audition. Vision
provides them with information about objects in the environ-
ment, including other agents and the targets. Audition allows
them to perceive sounds emitted by other agents shooting.
Each agent’s laser is not sufficiently strong to destroy a target,
so they must cooperate. The effectiveness of a laser shot
is related to the amount a time an agent spends aiming at
a target. A simulation parameter named laser interval (li)
establishes the number of simulation cycles that an agent
must spend aiming at a target for it to have full effect.
The amount of damage that a target suffers from a shot is
determined by the expression d = li · lt ·dmax, where d is the
damage, lt is the time the agent spent aiming at that object
and dmax is the maximum damage that a shot can cause. We
set dmax to 1 and the amount of damage needed to destroy
a target to 1.1, so that only at least two simultaneous shots
can destroy the target.

Targets are moving at a constant speed, bouncing when
they hit a limit of the world. Agents must follow the target’s
movement to produce effective shots.

Gridbrains are configured to have three grids: one alpha
grid to process vision sensory information, another alpha grid
to process audition sensory information and the beta grid.
Additionally to the components described in section II-B,
input and output components of the types detailed in table I
are included in the respective grids component sets.

The input value of the action component, i determines the
intensity with which the action is triggered. The force applied
in go and rotate actions, as well as the intensity of the laser
shot is proportional to i. The energy costs of the actions are
as follow: 0.01 · i for go and rotate and 0.1 · i for fire. Agents

Fig. 3. Evolution of metrics in a simulation run.

are initialized to having an energy of 1.
Every time an agent shoots at a target, a score is calculated

by multiplying the damage caused by this shot with the
number of simultaneous successful shots from other agents.
We define the fitness function as the best score obtained
during the agent’s lifetime. This encourages the agents to
evolve mechanisms to produce more effective shots, but also
to synchronize their shooting with the other agents.

Evolutionary parameters are configured as following:
add/remove connection probability is set to pa = pr =
0.01; split/join connections probability is set to ps = pj =
0.01; the change inactive component operator is used, with
pc = 0.2; change parameter is set to pp = 0.01, δ = 1.0;

www.manaraa.com

objects

DMUL

ta rge t

IN

INV

color

IN

RAND

SEL

MEM

pos ition

IN

DMUL

MAX

SEL

SUM

SEL

SEL

GTZ

NOT

SUM

dis ta nce

IN

sounds

dis ta nce

IN

SEL

SUM

RAND

MEM

INV

INV

MOD

NOT

pos ition

IN

DMUL

AND

RAND

ZERO

AND

beta

MEM

MOD

1.000000

TMEM

0.771613

AMP

0.235498

CLK

SUM

0.581935

CLK

MUL

GTZ

fire

OUT

rota te

OUT

MOD

DMUL

ZERO

0.292649

AMP

Fig. 4. An evolved gridbrain.

recombination probability is set to prec = 0.25; SEGA buffer
size is set to sbuf = 100 and the fitness ageing factor is set
to a = 0.5. These values where found to be good choices by
previous benchmarking.

The simulation is defined to have 10 agents and 5 targets.
Agents have a random maximum lifespan of 9.5 to 10.5
Kcycles. They can die because this lifespan is reached, or
by expending to much energy or being shot. The complete
experiment definition can be found in the targets.lua file, that
is in the experiments directory of the LabLOVE release.

In figure 3 we can observe the evolution of several
metrics during 106 Kcycles of simulation. These metrics are
extracted by calculating the respective average value for dead
agents during 100Kcycles. The first one is the final fitness
value, the second is the number of targets that the agent
collaborated in destroying and the third is the number of
connections in the agent brain. As can be seen, the increase
in fitness successfully drives the agents to develop the ability
to destroy targets.

The number of connections in gridbrains is used as a
simple complexity metric. As can be observed, there is a
spike in this value in the begining of the run, followed by
a sharp decrease in size. The mechanism propose appear to
show the ability to adapt gridbrain sizes to the demands of
the environment. As fitness stabilizes, so does the number of
connections.

In figure 4, we show a sample gridbrain extracted from
an agent dead in the last 100 Kcycle time interval of the
simulation run. Two distinct mechanism have emerged: one
to select and follow a target, and another to fire at regular

intervals, synchronizing this action with the other agents.
The first mechanism uses the SEL component to select an
object amongst visible targets and use its relative position to
rotate in its direction. The second feeds a sound perception
to a clock component, this synchronizing this clock with
shooting sounds. This mechanism evolved a clock parameter
that produces ticking intervals very close to the laser interval
defined in the simulation, which is clearly a good strategy
for shooting efficiency.

V. FINAL REMARKS

The experimental results obtained indicate the gridbrain
to be a promising approach for emerging behaviors in evolu-
tionary multi-agent simulation. The evolutionary process was
able to take advantage of the computational building blocks
to create mechanisms of synchronization, temporal-based be-
havior and processing of sensory information from multiple
channels and a variable number of entities. We believe that
the evolution of these mechanisms would be problematic for
more traditional approaches, like rules systems and artificial
neural networks.

We expect out work to have application in the develop-
ment of more sophisticated scientific multi-agent simulations.
Since the gridbrain is well suited for continuous, real-time
environments, we also believe that interesting engineering
applications exist - for example in the development of de-
centralized robot swarms, as well as agents for video games
and virtual reality worlds.

www.manaraa.com

ACKNOWLEDGMENTS

The first author would like to acknowledge grant
SFRH/BD/19863/2004 from Fundação para a Ciência e
Tecnologia (FCT), Portugal.

REFERENCES

[1] Holland, J. H., Hidden Order - How Adaptation Builds Complexity,
Addison-Wesley, 1995.

[2] Holland, J.H. and Holyoak and K.J. and Nisbett, R.E. and Thagard,
P., Induction: Processes of Inference, Learning, and Discovery. Cam-
bridge, MA: MIT Press, 1986.

[3] Eiben, A. E. and Griffioen, A. R. and Haasdijk, E., Population-based
Adaptive Systems: concepts, issues, and the platform NEW TIES. In
Proc. of the ECCS07 - European Conference on Complex Systems,
Dresden, Germany, 2007.

[4] Stanley, K. O. and Bryant, B. D., and Miikkulainen, R., Evolving
neural network agents in the nero video game. In Proceedings of the
IEEE 2005 Symposium on Computational Intelligence and Games,
2005.

[5] Yaeger, L.S., & Sporns, O., Evolution of Neural Structure and Com-
plexity in a Computational Ecology. In: Rocha, L. et al (ed), Artificial
Life X, Cambridge, MA: MIT Press, 2006

[6] Adamatzky, A. and Komosinski, M., Artificial Life Models in Software.
Springer, 2005

[7] Hyotyniemi, H., Turing machines are recurrent neural networks. In
Proceedings of STeP’96, Finnish Artificial Intelligence Society, pp.
13–24, 1996.

[8] Menezes, T. and Costa, E., The gridbrain: an heterogeneous network
for open evolution in 3d environments. In Proc. of the The First IEEE
Symposium on Artificial Life, Honolulu, USA, 2007.

[9] Menezes, T. and Costa, E., Modeling evolvable brains - an het-
erogeneous network approach. International Journal of Information
Technology and Inteligent Computing, 2(2), 2008.

[10] Menezes, T., Lablove - laboratory of life on a virtual environment.
http://sourceforge.net/projects/lablove, 2007.

[11] von Neumann, J, First Draft of a Report on the EDVAC. technical
report, Moore School of Electrical Engineering, University of Penn-
sylvania, 1945.

[12] Langdon, W. B., The evolution of size in variable length repre-
sentations. In 1998 IEEE International Conference on Evolutionary
Computation, pages 633–638, Anchorage, Alaska, USA, IEEE Press,
1998

[13] Poli, R. 1996. Parallel Distributed Genetic Programming. technical
report CSRP-96-15. The University of Birmingham, UK.

[14] Poli, R. 1999. Parallel distributed genetic programming. Chap. 27,
pages 403–431 of: D. Corne, et al. (ed), Optimization, Advanced Topics
in Computer Science. Maidenhead, Berkshire, England: McGraw-Hill.

[15] Miller, J. F. 1999. An Empirical Study of the Efficiency of Learning
Boolean Functions using a Cartesian Genetic Programming Approach.
Pages 1135–1142 of: GECCO 1999: Proceedings of the Genetic and
Evolutionary Computation Conference. Orlando, Florida: Morgan
Kaufmann, San Francisco.

[16] Miller, J. F., & Thomson, P. 2000. Cartesian Genetic Programming.
Pages 121–132 of: Proceedings of the 3rd European Conference on
Genetic Programming. Edinburgh: Springer Verlag, Berlin.

